1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <queue> #include <set> #include <vector> using namespace std;
const int INF = ~0u>>1; typedef pair <int,int> P; #define MID(x,y) ((x+y)>>1) #define iabs(x) ((x)>0?(x):-(x)) #define REP(i,a,b) for(int i=(a);i<(b);i++) #define FOR(i,a,b) for(int i=(a);i<=(b);i++) #define pb push_back #define mp make_pair #define print() cout<<"--------"<<endl #define maxn 2010 #define EPS 1e-8 typedef struct Point{ double x,y; Point(double x = 0, double y = 0):x(x),y(y){} }Vector; int n;double R; struct Circle{ Point c; double r; Circle(Point c = Point(), double r = 0):c(c),r(r){} }; struct Node{ double angle; int id,flag; }node[maxn];
bool cmp(Node a,Node b){ return a.angle == b.angle ? a.flag > b.flag : a.angle < b.angle; }
Vector operator + (Vector a, Vector b) { return Vector(a.x + b.x, a.y + b.y); } Vector operator - (Vector a, Vector b) { return Vector(a.x - b.x, a.y - b.y); } Vector operator * (Vector a, double k) { return Vector(a.x * k, a.y * k); }
inline double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; } inline double dis_pp(Point a,Point b){ return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); }
Point intersection_ll(Point a, Vector i, Point b, Vector j) { Vector k = a - b; double t = cross(j, k) / cross(i, j); return a + i * t; }
void intersection_cl(Circle c, Point p, Vector v, Point &p1 , Point &p2) { Point l1 = p, l2 = p + v; Vector u = Vector(-v.y, v.x); Point p0 = intersection_ll(p, v, c.c, u); double d1 = dis_pp(p0 , c.c); double d2 = dis_pp(l1 , l2); double t = sqrt(c.r * c.r - d1 * d1)/ d2; p1.x = p0.x + (l2.x - l1.x) * t; p1.y = p0.y + (l2.y - l1.y) * t; p2.x = p0.x - (l2.x - l1.x) * t; p2.y = p0.y - (l2.y - l1.y) * t; }
void intersection_cc(Circle c1 , Circle c2 , Point& p1 , Point& p2){ double d = dis_pp(c1.c, c2.c); double t = (1.0 + (c1.r * c1.r - c2.r * c2.r) / d / d) / 2; Point u = Point(c1.c.x + (c2.c.x - c1.c.x) * t, c1.c.y + (c2.c.y - c1.c.y) * t); Point v = Point(u.x + c1.c.y - c2.c.y, u.y - c1.c.x + c2.c.x); intersection_cl(c1 , u, v - u, p1 , p2); }
Point p[maxn];
inline int solve(int n){ int ret = 1,cnt = 0; bool vis[maxn]; for (int i = 0; i < n; i ++){ cnt = 0; for (int j = 0; j < n; j ++){ if (i == j) continue; if (dis_pp(p[i], p[j]) > 2 * R + EPS) continue; Point a,b; intersection_cc(Circle(p[i],R), Circle(p[j],R), a, b); node[cnt].id = j; node[cnt].flag = -1; node[cnt ++].angle = atan2(a.y - p[i].y, a.x - p[i].x);
node[cnt].id = j; node[cnt].flag = 1; node[cnt ++].angle = atan2(b.y - p[i].y, b.x - p[i].x); }
if (cnt == 0) continue;
sort(node, node + cnt, cmp); memset(vis,0,sizeof(vis));
int s = 0,sum = 1,k = 0; while (s < cnt / 2){ if (node[k].flag > 0){ sum ++; ret = max(ret,sum); vis[node[k].id] = 1; }else { if (vis[node[k].id]){ s ++; sum --; } } k ++; k %= cnt;
}
} return ret; }
int main(){ while (~scanf("%d%lf",&n,&R) && n){ for (int i = 0; i < n; i ++){ scanf("%lf%lf", &p[i].x, &p[i].y); } int ans = solve(n);
printf("It is possible to cover %d points.n",ans ); } return 0; }
|