介绍
本文主要介绍概率论经常出现的名词和缩略形式
Cumulative distribution function(CDF) 累计分布函数
Probability distribution(PD)
Probability Mass Function(PMF) 概率密度函数
这个和下一个PDF类似,但是用在discrete parameter上。所有可能的组合为1
Probability density function(PDF) 概率密度函数
frequentist inference and Bayesian inference
mean squared error, or MSE
贝叶斯模型
首先是先验概率,假设model为$P[0.1, 0.2, \cdots, 0.9]$的概率值为多少多少.
然后得到Model的likehood函数:$P(data | Model)$
算后验概率,$P(Model | data)$,注意这个对每个model而言的和为1.
从prior到poster就是贝叶斯推断。使用一开始的贝叶斯模型得到的poster概率来预测新的参看第五题
Union Distribution
他的PDF是flat的
Beta Function
Beta distribution
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] parametrized by two positive shape parameters, denoted by α and β, that appear as exponents of the random variable and control the shape of the distribution.
贝叶斯的prior和poster与beta function关系:http://stats.stackexchange.com/questions/58564/help-me-understand-bayesian-prior-and-posterior-distributions
Wiki
Conjugacy
analogous(类似的)
根据观察改变poster
P-value
检验$H_0$假设是否正确。
Poison
Gamma distribution
In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The common exponential distribution and chi-squared distribution are special cases of the gamma distribution. There are three different parametrizations in common use:
- With a shape parameter k and a scale parameter θ.
- With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter.
- With a shape parameter k and a mean parameter μ = k/β.
confidence interval
Credible Intervals
The differecen between confidence interval and credible interval
Bayersian -> decision theory
Posterior distribution = prior + data
Bayersian -> decision theory -> loss function
- linear decision, the loss function is L1 loss, and minimum point is median.
- square decision, the loss function is L2. And the optimal is mean
- 0/1, the loss function is L0.
For the posterior distribution, we can get the decision loss function distribution.
For example, there is two competing hypothesis: $H_1$,$H_2$.
L(d) means decide and the loss of this decision.
Expected losses: $E(L(d)) = \sum P(H_i \vert data)L(d) $
协方差
用来表示两个随机变量关系的统计量。
方差可以写成:
类似,协方差:
结果含义就是正值,两者呈现正相关。负值则相反。
协方差矩阵就是在高维情况下产生的。n维数据就会有$\dbinom{n}{2}$个协方差
统计学三大分布
多项分布
极大似然估计(MLE)
似然函数$L_n(\theta) = \Pi_{i=1}^n f(X_i;\theta)$.
极大似然估计记为$\hat{\theta}_n$, 是使似然函数最大$\theta$的值。
参考
[1] 协方差-WIkipedia: https://en.wikipedia.org/wiki/Covariance_matrix
因为我们是朋友,所以你可以使用我的文字,但请注明出处:http://alwa.info